Bio esthetics is the quintessence of biology, biomechanics and esthetics and aims to more conservative, ethical solutions to a myriad of esthetic deficiencies.

Didier DIETSCHI, D.M.D, PhD, Privat-Docent

Senior lecturer, Department of Cariology & Endodontics, School of Dentistry, University of Geneva, Switzerland.

Adjunct Professor, Department of Comprehensive Care, Case Western University, Cleveland, Ohio.

Private practice & Education Center – The Geneva Smile Center, Switzerland

Address for correspondence:
Didier Dietschi
The Geneva Smile Center
2 Quai Gustave Ador
1207 Geneva
SWITZERLAND
Introduction

A more attractive smile, improved dental esthetics and durable results have been for long intimately linked to ceramic restorations such as veneers and crowns and remain strongly anchored in patients and dental professional minds. Modern composite resin technology has however challenged this assumption because they offer excellent aesthetic potential and acceptable longevity, with a much lower cost than equivalent ceramic restorations for the treatment of both anterior and posterior teeth (1-3). Moreover, composite restorations allow for minimally invasive preparations or no preparation at all when modifying existing tooth anatomy or assuming the replacement of decayed tissues; this constitutes an unparalleled advantage of “free-hand bonding” also due to its relative simplicity. This rationale has been the foundation of a new concept named ‘bio-aesthetics’, giving priority to additive, minimally or microinvasive procedures to preserve tooth biology and biomechanics.

While resin composites are universally considered the “standard of care” material for the filling of small to medium class III, IV and V cavities, they can be used today in many more indications such as the correction of small to moderate aesthetic and functional deficiencies (2,3...+). Recent developments in composite optical properties and physical properties have also significantly contributed to simplifying their application and improving treatment outcome and predictability (4-6). The aim of this short article is then to demonstrate the potential and multiple applications of composite as a modern aesthetic restorative material in the context of bio-esthetic treatment approach.

Revisiting smile rehabilitation concepts: Bio-esthetics

Choosing the right restorative approach (direct or indirect, composite or ceramics) has been debated over decades and finally, the decision largely depends on the practitioner’s own education background and experience with each of the aforementioned options. Only “extreme” conditions such as minor aesthetic form and color corrections or extensive decays in non-vital teeth, lead to evident solutions (direct and respectively indirect restorations), while the majority of other cases lie in a “gray zone” which actually makes a pertinent choice more intricate. A simple yet effective approach to this dilemma relies on a sound bio-mechanical analysis of the teeth potentially involved in the treatment status, combined to the usual functional and aesthetic analysis. Then, having as a prime objective the respect of tooth biology and conservation guides clinician to a logical decisional tree, such as presented in table 1.
Fig 1a and 1b Preoperative views of a young patient presenting relatively large diastemas distally to lateral incisors. The case is complicated by improper occlusal relationship with lower canines which reduce the space available for restorations

Fig 1c, 1d and 1e Post-operative views showing an improved smile configuration using «no-prep» direct composite restoration (inspiro, EdelweissDR). This treatment illustrates the «bioesthetic» philosophy which truly represents a breakthrough in modern restorative dentistry
The “Bio-esthetic” philosophy actually give priority to chemical color improvements (vital bleaching, non-vital bleaching, micro-abrasion), associated to direct composite restorations and bonded ceramic restorations for more extensive decays, limiting the use of traditional full crowns to existing restoration replacement and a few conditions of extreme tooth fragilization. The progressive treatment concept presented in table 2 then summarizes the modern vision of esthetic restorative dentistry.

Table 1. Treatment decision process

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Direct option</th>
<th>Indirect option</th>
</tr>
</thead>
<tbody>
<tr>
<td>age of the patient</td>
<td>younger</td>
<td>older</td>
</tr>
<tr>
<td>size of the decay</td>
<td>smaller</td>
<td>larger</td>
</tr>
<tr>
<td>tooth vitality</td>
<td>vital</td>
<td>non-vital</td>
</tr>
<tr>
<td>tooth colour</td>
<td>normal</td>
<td>non-treatable discolouration*</td>
</tr>
<tr>
<td>facial anatomy</td>
<td>normal</td>
<td>altered</td>
</tr>
<tr>
<td>number of restoration</td>
<td>unrelated</td>
<td>unrelated</td>
</tr>
</tbody>
</table>

*using chemical treatments (vital & non-vital bleaching or microabrasion)

Table 2: Modern progressive treatment concept and various types of procedures

<table>
<thead>
<tr>
<th>Types of procedures</th>
<th>Typical procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non restorative</td>
<td>Esthetic chemical treatments (bleachings, micro-abrasion) Direct bonding</td>
</tr>
<tr>
<td>Minimally invasive</td>
<td>Direct bonding Ultra-thin Veneers Modern inlays and onlay techniques</td>
</tr>
<tr>
<td>Micro-invasive</td>
<td>Classical veneers, inlay and onlays</td>
</tr>
<tr>
<td>Macro-invasive</td>
<td>Crowns and bridges</td>
</tr>
</tbody>
</table>
Fig 2a and 2b Preoperative smile of a young patient presenting post-orthodontic enamel hypocalcifications and asymmetrical, shorter central incisors.

Fig 2c A free-hand mockup was made to assess the ideal length for an optimal smile configuration.

Fig 2d Post treatment view showing better smile balance and harmony, following micro-abrasion (to remove white spots) and direct bonding (Inspiro).
Fig 3a Preoperative views of a young patient showing enamel hypocalcifications and asymmetrical tooth forms. Fig 3b and c Shade selection is performed using a special dual-laminate shade guide which grants color predictability (inspira) Fig 3d and 3e A partial mockup (teeth #11 & #12) is made to assess the impact of planned restorations on the smile configuration.
Fig 3f and 3g Rubber dam is placed to provide an optimal working environment. The full smile (premolar to premolar) is visible to facilitate procedures and especially to keep control of the smile line configuration.

Fig 3h A conservative preparation of the white spots is made to provide a minimum space for color correction (1-1.5mm).

Fig 3i A first layer of dentin shade is placed to cover residual discolored area and provide a correct chroma (body i2, inspiro).

Fig 3j The second layer is placed with an achromatic enamel providing proper translucency and opalescence (skin white, inspiro).

Fig 3k Further form correction are made with the same enamel shade (no dentin is needed as layers are not thicker than 1-1.25mm).
Fig 3l Detailed view of the corrected central and lateral incisors, using minimally invasive approach with direct composite
Fig 3m Post-operative showing a more harmonious smile configuration and uniform tooth color
Fig 3n 2Y view showing no alteration of these partial composite restorations
Fig 3o and 3q: Anatomical details of the restoration micro-morphology and surface smoothness which proved stable over 2 years of clinical function (inspiro, EdelweissDR)
New shading approach: the natural layering concept

To achieve perfect direct restorations has been for long an hypothetical aim due to the imperfect optical properties of many composite resins systems. So far, the over-simplification (mono-incremental) as well as over-complexity (multi-incremental) of shading systems has tremendously limited the benefit of direct composite restorations. Even today, the complexity of some systems is often associated to shading concepts mimicking ceramic systems (which are applied in totally different layer thicknesses) or the influence of over-meticulous clinicians who compensated deficient composite optical properties with intricate layering concepts. The use of the natural tooth as a model and the identification of respective dentine and enamel optical characteristics (tristimulus L*a*b* colour measurements and contrast ratio) has then been a landmark in developing better direct tooth coloured materials (4,7-8). The ‘natural layering concept’ is then a simple and effective approach to creating highly aesthetic direct restorations which has become a reference in the field of composite restorations (9-12).

References